
USAARL Report No. 98-33

Designing Optimal Hierarchies for
Information Retrieval with

Multifunction Displays

By

Gregory Francis

Purdue University

C30
Aircrew Health and Performance Division CP

C00

July 1998

Approved for public release, distribution unlimited

U.S. Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577

Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron
Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other
person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic

mailing lists should confirm correct address when corresponding about laboratory reports.

Dis~gitin

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy, or decision, unless so designated by other
official documentation. Citation of trade names in this report does not constitute an official Department of
the Army endorsement or approval of the use of such commercial items.

Hiuman use

Human subjects participated in these studies after giving their free and informed voluntary consent.
Investigators adhered to AR 70-25 and USAMRMC Reg 70-25 on Use of Volunteers in Research.

Reviewed:

MORRIS R. LATTIMORE, JR.
Colonel, MS
Director, Aircrew Health &

Performance Division
Released for publication:

I,"FI'o I.',
JC•IN A. CALDWELL, Ph.D. CHRYt GAFFNE

Ctairman, Scientific Review• Colonel, MC, SFS
Committee Commanding

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
I Approved for public release, distribution

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
USAARL Report No. 98-33

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
U.S. Army Aeromedical (If applicable) U.S. Army Medical Research and Materiel
Research Laboratory MCMR-UAD Command

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
P.O. Box 620577 Fort Detrick
Fort Rucker, AL 36362-0577 Frederick, MD 21702-5012

8a. NAME OF FUNDING ! SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

62787A 30162787A879 PB DA336445

11. TITLE (Include Security Classification)
Designing Optimal Hierarchies for Information Retrieval With Multifunction Displays (U)

12. PERSONAL AUTHOR(S)
Gregory Francis

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNTFinal FROM TO 1998 July 64

16. SUPPLEMENTAL NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse ff necessary and identify by block number)

FIELD GROUP SUB-GROUP Cockpit design, hierarchy, multifunction displays,
workload

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Modern aircraft use computer screens with a push button interface to replace a variety of
single-purpose instruments. Such multifunction displays (MFDs) are gradually being
introduced into military helicopters, with future aircraft likely to be highly dependent
on computers. Studies have shown that poor design of MFD hierarchies has a significant
impact on user satisfaction and performance. The purpose of this study was to extend a
theoretical analysis of hierarchy search into a methodology for gathering data and
building a hierarchy layout that minimized the time needed to find items in a hierarchy.
Pilot studies demonstrate the effectiveness of the methodology and show that optimizing
hierarchy layout may lead to a 25% reduction in search times.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
X UNCLASSIFIED/UNLIMITED [] SAMEASRPT.] DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Chief, Science Support Center (334) 255-6907 MCMR-UAX-SS

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Table of contents

Page

Introduction ... 1

General approach ... 3

A hierarchical interface 3

M easuring motor time 5

M easuring categorization time ... 5

Optimizing hierarchical layout .. 7

Testing .. 7

Example 1 ... 7

Example 2 ... 12

Conclusions ... 12

References .. 15

Appendix A. Hierarchy search computer software .. 17

Appendix B. Summary of Java classes .. 18

Appendix C. Java source code .. 28

List of figures

Page

1. Schematized drawing of two pages from an MFD display and its push-button

interface .. 2

2. Three displays from the program designed to investigate user interactions in

hierarchical search ... 4

3. The program for measuring motor time ... 6

4. Mean search times ... 9

5. Hierarchy displays along the path to Monterrey, Mexico, for the optimized hierarchy.

... 1 1

6. M ean search times for users in the second pilot study .. 13

A-1. The Java classes written to explore hierarchy searches 17

iiW

Introduction

Military and civilian aircraft in the 1960's and 1970's used many separate gauges, dials, lights,
switches, buttons, circuit breakers, control wheels, and levels in tightly packed aircraft cockpits.
The introduction of new instruments and data sources forced a competition for limited cockpit
space. This competition was partly alleviated by the introduction of microcomputers and video
displays into the cockpit environment. Multifunction displays (MFDs), capable of presenting a
variety of information from different sources, replaced many electromechanical devices, thereby
freeing room in the aircraft cockpit. Current MFDs are often similar in appearance and usage to
automated teller machines in that crew members push buttons to move through a hierarchy of
display pages containing instructions, information, or lists of user-activated functions. They
increase the total amount of available information, with the limitation that only some of it is
visible at any given time. An additional benefit of MFDs is to provide a simpler layout of
cockpit instrumentation, so that crew members spend less time scanning for information and
more time piloting the aircraft. The reduction in pilot workload due to the introduction of MFDs
in the cockpit was a primary factor in eliminating the need for flight engineers in many current
generation transport aircraft.

Figure 1 schematizes MFDs as they are used in a variety of modern aircraft. Information is
supplied on a large computer monitor. Push-buttons surround the monitor to allow the crew to
interface with the MFD computer. Figure 1A shows real-time status information from the
aircraft engines and other aircraft systems (SYS). Figure 1B shows targeting information. The
push-buttons along the sides of the MFD are associated with software-generated display labels,
indicating jumps to additional display pages containing related information. Pressing a soft-key
causes the MFD to display a new page containing the information or functions indicated by the
key's label.

MFDs typically contain a wide range of single and multistep functions. The type of objects
and information displayed on the MFD, the data acquisition channels that are represented by the
displayed objects, the set of active database links, as well as the functions that soft-keys can
activate are commonly grouped together logically on one or more interconnected display pages.
Pilots dynamically select a display based on the information and functionality desired to
accomplish changing flight management or combat tasks such as situational awareness,
navigation, communications, systems monitoring, battlefield and threat monitoring, and
targeting.

Despite the significant impact of MFDs on the layout of instrumentation in aircraft cockpits
and the responsibilities of crew members, little is known about how users search for information
in such systems. Several studies have investigated the physical characteristics of the displays
and the push-button interface (e.g., Rash and Becher, 1982; Hannen and Cloud, 1995; Klymenko
et al., 1997). These studies help insure that crew members can see the monitor and reach the
buttons for a variety of conditions (e.g., direct sunlight using protective gloves). Other studies
explore the opportunity to create new types of information displays (e.g., Braithwaite et al.,
1997). In contrast, there has been little research to insure that crew persons can quickly search
through the hierarchy of information in the MFD database to retrieve needed information.

1

A. B
siOlOlOllolo I,® Oi0l0OlOl0lI•

0_ 0S 00

"U ".',,,••]

-f ~- --~HI "-- ~I l•t •"

OL =$a

:M!®!®!81811l1l1El ÷1O181,

Figure 1. Schematized drawings of two pages from an MFD display and its push-button interface.
In A, the systems page shows information on engines and includes legends along the
right to indicate that pressing the associated button will cause the display to present the
requested information. In B, the same display screen shows a page with targeting
information.

The military guidelines (MIL-STD-1472D) for development of the hierarchical structure of
information in the MFD provide few instructions and little justification. The small number of
studies investigating hierarchy design issues may reflect the difficulty of the problem. As described
in Francis and Reardon (1997), small changes in part of a hierarchy can have profound effects on
search times elsewhere in the hierarchy. Such sensitivity makes general guidelines difficult to
apply. As a result, hierarchy creation currently remains an artistic endeavor, depending primarily on
the experience and intuition of the designer.

The few studies exploring the impact of hierarchy design suggest that it is important. In non-
military domains, hierarchy design has been identified as a key factor in overall performance and
satisfaction with an MWD type device (Seppala and Salvendy, 1985; Cook and Woods, 1996).
Studies using simulated military aircraft suggest that MFD hierarchy design may affect crew
workload and situation awareness (e.g., Reising and Curry, 1987; Sirevaag et al., 1993).

To promote a more rigorous analysis of hierarchy design, Francis and Reardon (1997)
developed a mathematical framework that considers a variety of factors in hierarchy design. The
current document shows how to apply that framework to particular cases of hierarchy design.

2

General approach

MFDs trade a search of physical space for a search of virtual space through the hierarchy of
information. Other things equal, it is desirable to arrange the hierarchy of information in a way
that minimizes the search time. Francis and Reardon (1997) provided a theoretical framework to
consider this issue. They identified an optimization method that chooses the best layout of
information in the hierarchy. For the optimization method to succeed, it required a model of the
time needed to search through the virtual space of the MIFD hierarchy. In this section, we briefly
summarize the model proposed by Francis and Reardon and show how to apply it to a particular
design task.

Each page in an MFD hierarchy defines a unique path of button pushes that terminates when
the page is shown. Measuring the time to reach a hierarchy page requires knowing the time
needed to move to and push the various buttons along the path to the page. These movement and
push times all contribute to a motor term. These times are possibly distinct from the time
required to decide which button to push. Such decisions require reading various choices until the
option leading to the target page is identified. The times to read, interpret, and decide to select
contribute to a categorization term. Together with any computer response time, this analysis
suggests that the time to reach a page in the hierarchy will be:

T = (motor) + (categorization) + (computer response).

Each of these terms is likely to vary with the pattern of button pushes that define the path, the
options to be categorized along the path, and the information displayed by the computer. By
considering the variations in these variables for different buttons and items, the optimization
method selects a layout that maximizes performance according to any designer-imposed
constraint. This approach uses information in the details, or microstructure, of the human-
computer interface to maximize performance.

The analysis in Francis and Reardon (1997) was theoretical; it described equations and
techniques for identifying an optimal layout of information when specific data were available.
We now explore methods for gathering the needed data and demonstrate the utility of the
method. For that purpose, we developed a suite of computer prograems to investigate hierarchical
searches. The programs will be described briefly in the ensuing text and more fully in the
appendices. The next section describes the basic interface used to explore hierarchical search.
Data were gathered from this interface.using methods described in subsequent sections. The data
were then used to build an optimal layout of pages that considers the microstructure properties of
the human-computer interaction. The validity of the optimization method was then verified with
further experimentation.

A hierarchical interface

To investigate the microstructure of hierarchical information retrieval, we wrote a program in
the Java programming language that allowed users to select virtual buttons with mouse controls.
Selecting a button moved the user through a virtual hierarchy of information and generated a
new set of options associated with each button. Figure 2 shows snapshots of the interaction
window at various positions along a path to a target item. In this case, the display portrays

- 3

Tai RPM, Rotor --

- Ta

20

TaIlRPM, Rotor

120

mC- TaIllRPM, Rotor

120--

Figure 2. Three displays from the program designed to investigate user interactions in
hierarchical search. The user is given a target item in the center of the window and
moves through the hierarchy to find the item. The user moves through the hierarchy
with successive mouse clicks on the appropriate buttons to reach the target. A shows
the top level, where buttons code major systems in a helicopter. B shows a screen
from the second level, where buttons code various aircraft systems. C shows a screen
from the bottom level, where buttons code various types of rotor information,
including TailRPM, the target item.

4

aircraft information suitable for use in a military helicopter. After pressing the Next target
button, a target item (sometimes paired with its parent to help the user find it) was displayed in
the center frame. The user was to move through the hierarchy toward the target item as quickly
as possible.

Figure 2a shows the top level of the hierarchy, where the options are various aircraft
information and the target is Tail-RPM, Rotor. Selecting the Aircraft-SYS button changes the
labels on the buttons to those shown in Figure 2b, where the options are various choices in
aircraft systems. Selecting the Rotor button changes the labels to those in Figure 2c, which show
options for the rotor system. Selecting the Tail-RPM button means that the user has found the
desired item. This basic scheme was used in a number of different ways to explore hierarchical
search.

Measuring motor time

Defining the motor term of the model requires identifying the time needed to make button
presses and to move the mouse control between buttons. This cannot be done during a normal
hierarchical search because the time to find an item includes both the time to physically push the
correct buttons and the time to categorize items. We hypothesized that the motor time could be
isolated in a situation where the user knew in advance where to move the mouse control. In such
a situation there would be no categorization time.

Thus, we created a program that required the user to select pairs of buttons. Figure 3 shows a
snapshot of the program window. Each button is numbered between 0 and 7. The center region
specified the pair of buttons that were to be pressed in succession. The program measured the
time between the first and second button presses. This measure was repeated for every
combination of successive button presses, including repeated selection of the same button. (The
only exception was that the user was never asked to make a movement that ended in the Next
target button, as such movements never occurred during searches of the hierarchy.) The time for
each movement was measured several times, and the average stored in a file for later use.
Because the user could plan the movement before the first button press, we hypothesized that the
movement time was a pure measure of how long it took to physically move and initiate the
mouse control.

Measuring categorization time

The optimization technique described in Francis and Reardon (1997) required, in addition to
the motor times, the time needed to categorize items. Unlike the technique for measuring motor
times, there seems to be no direct method of measuring categorization times. Any measure of
response time necessarily will include both categorization and motor times. We need to
disentangle these terms so that the model can predict response times when the hierarchical layout
is restructured and the items are paired with new motor times.

To disentangle response times, we modified the basic hierarchy search program so that it
measured the time between successive button presses as the user went through a path toward a
target item. The time between button presses was coded by item name and stored in a file for
later use. We refer to these measures as between item search times.

5

7-> 0

215

Figure 3. The program window for measuring motor time. The center panel displays a
sequence of button presses for the user to perform. The program measures the time
between the first and second button press. Since the user can find the buttons to be
pressed before starting the movement, the time should include only motor time.
Motor time was measured in this way for every pair of buttons.

Next, we used the previously measured motor times between button presses and the between
item search times to derive categorization times. We used the following logic. The between
item search time includes both motor and categorization time. Thus, subtracting the motor time
from the between item search time should leave an estimate of the categorization time. This
calculation was performed for every item in the hierarchy.

This approach has the benefit of avoiding another difficult problem in measuring
categorization times. Previous attempts to model hierarchical search have noted that
performance critically depends on the search strategy utilized by the user (Lee and MacGregor,
1985; Paap and Roske-Hofstrand, 1986; Vandierendonck, Van Hoe and De Soete 1988). In an
extreme case, if the user is very familiar with searching through the hierarchy and knows the
button presses needed to reach each item, categorization time will be negligible. On the other
hand, if the user has no experience searching through the hierarchy, categorization time will be
substantial and highly dependent on the details of the user's strategy. More commonly, a user
will know the button presses needed to reach some items in the hierarchy but will need to search
labels to find the path for other items. Such effects are likely to be highly dependent on the items
in the hierarchy and their significance to a particular user, so there is probably no way to model
the effects of learning.

Our measure of categorization time avoids modeling learning effects by measuring the
resulting behavior that depends on those effects. From the point of view of predicting search
times, it does not matter why some items are categorized more quickly than others, what does

6

matter is how long it takes to categorize each item. Our measure calculates the needed
information directly without worrying about the underlying details.

With the motor and categorization data, it is possible to predict the time required by the user
to find an item for any layout of information in the hierarchy. To make this prediction for a
single item, the computer simply notes the path needed to reach the target item, the buttons that
must be pushed along that path, and the items that must be categorized along the path. The time
for all button pushes and movements and the time for all categorizations sum to equal the
predicted search time.

Optimizing hierarchical layout

With the ability to predict search times for any layout of information in the hierarchy, it is
possible to search through different layouts for the one that minimizes expected search time.
Unfortunately, there are so many different possible distributions of items in the hierarchical
structure that it is not feasible to consider them all. Instead, we used a computational technique
called simulated annealing, as described in Francis and Reardon (1997). This computational
algorithm sifts through the possible hierarchical layouts to consider only those that have the best
chance of generating small search times. While the algorithm does not guarantee to find the
optimal layout of items in the hierarchy, in practice it usually produces a layout with a search
time close to the optimal.

Testing

A final program takes the hierarchical layout generated by the optimization program and
generates the button interface for user interaction. As the user searches for specified target
items, the computer keeps track of the search times. After the user is finished searching for
items, the program writes to a file the predicted mean search time (as generated by the
optimization program) and the mean actual search time (as measured during the user's
interaction). These are then compared to each other to consider the accuracy of the model's
predictions. They are also compared to the original time required to search for items in a non-
optimal hierarchical layout of items. The next two sections describe pilot studies that used this
general approach to hierarchy design.

Example 1

The first example shows application of the method using data gathered from a single user (the
first author). The hierarchy portrayed geographical information (continent, country, city) instead
of the aircraft information portrayed in Figure 2. This change was incorporated to insure that
subjects not familiar with aircraft systems could participate. The methodology of building an
optimal hierarchical layout remains the same regardless of the information in the hierarchy.
Subjects were asked to move through the hierarchy to click on the button for a city, country, or
continent.

7

The programs described above were run on a laptop computer. Of note, the mouse control
was utilized through a touchpad device, which is common on a variety of laptop computers. A
touchpad is a. small touch-sensitive pad. A light touch on the pad gives the user control of the
cursor placement. Dragging a finger along the surface of the touchpad moves the mouse cursor
in the same direction. A mouse click is initiated by quickly tapping twice on the touchpad in the
desired location. The touchpad device is useful for laptop computers because it offers the
functionality of a mouse with small space requirements. However, precise control of cursor
movement is somewhat difficult with the touchpad, and correction adjustments are frequently
necessary. It is also sometimes difficult to start and stop movement of the mouse cursor,
especially for small movements. As a result, sometimes a larger movement can be accomplished
more quickly than a short movement. None of these characteristics affected the basic approach
to hierarchy design, and motor movement times were gathered as described above. For each
movement, the average of 10 replications was used as the measure of motor time.

If all items in the hierarchy are accessed equally often, and the user is very familiar with the
path for each item, there is no difference between hierarchical layouts. Such situations are
probably very rare. For most MFD applications, some items are searched for more often than
others. The goal of the design proes is to place frequently searched items at the end of
hierarchical paths that are quickly accessed. To emulate the inhomogeneity of search frequency,
we created artificial missmon scenarios. Each scenario required the user to search for a fixed set
of 20 randomly selected items from the full (268 item) set. In each scenario 10 of the items were
searched for 5 times and the other 10 were searched for once. For each scenario, we gathered
categorization data and built and tested an optimal hierarchy.

To gather categorization data, the hierarchical layout was partially randomized so that every
item was located underneath its appropriate header category, but was in a random (fixed)
position under that header (e.g. each city remained under its appropriate country, but was
randomly assigned to a button). The randomization was used to insure that there were no order
cues (e.g. alphabetical order) that would guide the user's search process. A scenario was run
twice. On the second run of the scenario, between-item time was measured for each item
encountered in the hierarchy. These items included both the target items in the mission scenario
and the items located along the paths to reach the target items. We did not use data from the first
run of the scenario, as it would likely show strong learning effects for those items frequently
searched. The average between-item time for every item in the hierarchy was stored in a file to
be used by the optimization program.

A program that created an optimal hierarchy converted the motor time data and the between-
item data into independent motor time data and categorization time data. For the mission
scenario, the program then considered different hierarchical layouts to identify the one that
minimized predicted search time. This was a time-consuming process, requiring approximately
45 minutes for a scenario. When the optimization procedure finished, it wrote to a file the
hierarchical position of each item.

Finally, a testing program read in the hierarchical data generated by the optimization program,
and the user participated in two runs of the scenario. The testing program gathered data on the
second run of the scenario to measure the mean time to reach an item in the optimal hierarchy.
Figure 4a shows the expected time required to find a single item in the hierarchy for three
different mission scenarios. For each scenario, three values are plotted: the expected search

A

4.5

4

Mean 3.5

search 3-* Random
time 2.5 • Random
(seconds) 2 e Optimal (predcted)

1.5 Optimal (actual)

1
0.5

0
1 2 3 Average

Scenario

B

4.5
4

3.5

Mean 3
search 2

time 2

(seconds) 1.5
1

0.5
0

Alphabetical Random Optimal Optimal
(predicted) (actual)

Layout style

Figure 4. Mean search times. A shows expected search times for three scenarios and the
average. Three measures are plotted for each scenario. Random indicates that the
layout of information was randomly ordered on its appropriate page. Optimal
(predicted) is the model's prediction of expected search time, using the layout of
information that minimizes predicted search time. Optimal (actual) is the search
time for the optimal layout as measured through user interaction. B shows averages
across three trials for alphabetical, random, and optimal layouts.

9

time for the random hierarchy (used to gather between-item data), the model-predicted expected
search time for the optimal hierarchy, and the actual (from user testing) expected search time for
the optimal hierarchy.. Averages across the three scenarios are also plotted.

For the random hierarchies it took approximately 4 seconds to find an item in the hierarchy.
When the items were rearranged according to the optimization procedure, it took approximately
3 seconds to find an item. This corresponds to a 25% reduction in search time, a substantial
savings when one considers the large number of searches in an MFD.

Also noteworthy is the close correspondence between the predicted and actual performance
on the optimal hierarchy. (By its design, the model must agree perfectly with user performance
on the random hierarchies.) The strong agreement between the predicted and actual performance
suggests that the model of search times accurately captures many of the important characteristics
of hierarchical search.

Finally, we wanted to compare the performance on the random and optimal hierarchies to
what we suspect would be the default ordering in many situations. We measured mean search
times for situations where the hierarchy items were ordered alphabetically on the buttons. Figure
4b shows the averages of three scenarios for the alphabetical, random, and optimal hierarchies.
The alphabetical search times are similar to the random search times, and both are substantially
larger than the optimal search time.

It is instructive to note some characteristics of the optimal layout. With the touchpad mouse
controller, it takes substantial time to initiate a movement. As a result, the optimal layout created
paths for the most frequently used items that involved repeated pressing of the same button.
Figure 5 demonstrates the path for a commonly accessed item. Those items that could not be
placed along a repeating path had paths that minimized movement time. In general, this
organization is consistent with the guidelines suggested by military standards (MIL-STD-
1472D). However, the computational method considers more. Certain buttons were more easily
accessed than other buttons and certain paths in the hierarchy were more often traversed than
other paths. It is no trivial task to decide which set of paths should be associated with which
buttons because changing the location of one item requires additional changes among the
children of that item. At the same time, one cannot identify the best location of items at the top
levels without considering the best locations of items of their children. This type of circular
dependence makes the layout choices very complicated. The computational approach is able to
weigh all these dependencies simultaneously to generate the best overall hierarchical structure.

The overall feel of searching for information was that the target item would likely be found
where the user expected it to be and would be easily accessible. We suspect that in addition to
reducing search times, such optimal hierarchies will produce fewer errors and increase overall
user satisfaction. We have not yet investigated these issues.

10

S. B

-A

Monterrey, Mexico %4WMt

S~Monterrey, Mexico

19

NOt

Monterrey, Mexico, t iz er

19

...............................

Monterrey, Mexico

19

Figure 5. Hfierarchy displays along the path to Monterrey, Mexico, for the optimized hierarchy.
The user needs to make only one movement (from Next target to N_-America) and then
simply pushes the same button repeatedly to move through the hierarchy. Items that
cannot be placed in such paths (because of interference from other item paths) are
placed on paths that minimize movement time.

Eample2

A second study was run to insure that the methodology was general to a number of different
conditions. For this purpose, three additional users participated. None had extensive practice
working with the geographical hierarchy interface. The programs were run on a PC computer
with a standard hand-held mouse.

For subject 1, motor time estimates were based on the average of five replications for each
movement. The mission scenario was created in the same way as in Example 1. For subjects 2
and 3, motor time estimates were based on the average of three replications for each movement.
The mission scenario consisted of seven different items, with individual items assigned a unique
number of replications ranging from 1-7. For these users there were 28 target searches.

Figure 6 plots the mean search times for the users. The mean search times are generally
smaller than for Example 1, probably indicating the more efficient control of the hand-held
mouse versus the touch-pad device. The effects of optimization are not as strong as in Example
1. This could be because the users were less practiced searching through the hierarchy and made
more mistakes (two participants indicated that they sometimes forgot which continent was
associated with a country). Consistent with this interpretation, user 3 seems to show strong
practice effects. If such a result were verified, it would emphasize the importance of gathering
data from experienced users (which are more likely to mimic crew persons in military aircraft).
There may also be floor effects where the advantage of repeated button pushes is not as great for
the hand-held mouse as for the touch-pad device. Despite these possible confounds, the optimal
hierarchies did result in overall shorter search times than the random hierarchies. For subject 1,
additional explorations of search times with alphabetized hierarchies found mean search times
slightly above 4 seconds.

Conclusions

We have developed a methodology to apply the theoretical framework of Francis and Reardon
(1997) to the design of hierarchy layouts. The key insight in this methodology is to factor
between-item times into motor and categorization times. By measuring motor times separately
and subtracting them from between-item times, the method avoids many complicated issues that
would otherwise prevent accurate prediction of search times.

We developed computer software to explore hierarchy search and gather data for designing
optimal hierarchies. Two pilot studies demonstrate the utility of the methodology. The
hierarchies that minimized predicted search time were found to be substantially better than
random or alphabetically organized hierarchies. The results verified the benefit of optimizing
hierarchy layout and also verified the adequacy of the model at predicting search times.

12

5
4.5

4
Mean 3.5
search 3 U Random
time 2.5 E Optimal (predicted)
(seconds) 2 E Optimal (actual)

1.5
1

0.5
0- 11" -I - 1I

1 2 3 Average

User

Figure 6. Mean search times for users in the second pilot study. The optimized hierarchies
resulted in shorter search times than the random hierarchies.

To apply the methodology to the design of real MFDs requires gathering motor time in a real
(or accurately simulated) cockpit, accurate measures of between-item search times, and good
measures of the frequencies with which crew members use the various MFD functions. With
this data, it should be possible to optimize the layout of items on buttons and reduce search
times. However, one should consider a number of other issues before applying the optimization
approach to MFDs in cockpits. First, there may be some functions that must be reached within
specific time constraints or they are of no use to the crew (e.g., taking evasive action under fire).
The optimization method should take such constraints into account. Second, the motor time data
may vary depending on the function being searched for. For example, a pilot going through
checklist procedures before take-off may need to spend very little time on flight controls and can
quickly move through button pushes of the MFD. In contrast, a pilot taking evasive actions
under fire may need to keep his hands on flight controls as much as possible, thereby increasing
the average time needed to push buttons on the MFD. The model of search times needs to
consider that some items may be associated with conditions that necessarily slow search time.
With such considerations, the optimization method can design the hierarchy layout to
accommodate those restrictions. Third, real MFDs often place restrictions on which buttons can
be used. For example, in Figure 1A, the entire left side of the display is covered by engine
information and is unavailable for labels linking to other pages. Such restrictions have not been
considered in the hierarchy search programs considered here. Fortunately, there is nothing in the
basic methodology to prevent consideration of these issues. Their resolution may require
additional programming and data collection, but the theoretical framework remains unchanged.

A related issue concerns user variability. Even in the pilot studies, there are notable
differences between participants' search times (there were differences in the mission scenarios as
well). An MFD in an aircraft must accommodate a variety of users. As such, proper design of
the hierarchy must gather data from a variety of users and create a distribution of motor and
categorization times. With such data, it should be possible to design the hierarchy so that it

13

optimizes performance over the distribution of users. Nothing in the methodology prevents such
design, although it will require that substantial amounts of data be gathered from a variety of
users.

The current work provides the first, to our knowledge, scientific method to optimize
hierarchical layout that considers the details of the human-computer interactions. Our analysis
and experimental results suggest that the method may have a significant impact on usability of
MFDs. Given the growing use of MF~s in both military and civilian aircraft, it is important to
insure that they are designed to allow efficient retrieval of information. Our methodology
provides a means to that end.

14

References

Braithwaite, M., Durnford, S., DeRoche, S., Alvarez, E., Jones, H., Higdon, A., and Estrada, A.
1997. Flight simulator evaluation of a novel display to minimize the risks of spatial
disorientation. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL
Report No. 97-11.

Cook, R. and Woods, D. 1996. Adapting to new technology in the operating room. Human
Factors. 38: 593-613.

Department of Defense. 1981. Military standard: Human engineering design criteria for military

systems, equipment. and facilities. MIL-STD-1472D.

Flanagan, D. 1996. Java in a nutshell. O'Reilly & Asociates, Sebastopol, CA.

Francis, G. and Reardon, M. 1997. Aircraft multifunction display and control systems: A new
quantitative human factors design method for organizing functions and display contents Fort
Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Report No. 97-18.

Hannen, M., and Cloud, T. 1995. A case study in the design and testing of hands-on controls:
The Longbow Apache grip development process. In: Proceedings of the American
Helicopter Society 51 st Annual Forum. 1417-1435.

Klymenko, V., Harding, T., Martin, J., Beasley, H., Rash, C. and Rabin, J. 1997. Image quality
figures of merit for contrast in CRT and flat panel displays. Fort Rucker, AL: U.S. Army
Aeromedical Research Laboratory. USAARL Report No. 97-17.

Lee, E., and MacGregor, J. 1985. Minimizing user search time in menu retrieval systems.
Human Factors. 27: 157-162.

Morrison, M. (ed.) 1997. Java Unleashed: Second Edition. Sams.net Publishing, Indianapolis,
IN.

Paap, K., and Roske-Hofstrand, R. 1986. The optimal number of menu options per panel.
Human Factors. 28: 377-385.

Rash, C., and Becher, J. 1982. Analysis of image smear in CRT displays due to scan rate and
phosphor persistence. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory.
USAARL Report No. 83-5.

Reising, J., and Curry, D. 1987. A comparison of voice and multifunction controls: Logic
design is the key. Ergonomics. 30: 1063-1077.

Sirevaag, E., Kramer, A., Wickens, C., Reisweber, M., Strayer, D., and Grenell, J. 1993.
Assessment of pilot performance and mental workload in rotary wing aircraft. Ergonomics.
36: 1121-1140.

15

Seppala, P. and Salvendy, G. .1985. Impact of depth of menu hierarchy on performance
effectiveness in a supervisory task: Computerized flexible manufacturing system. Humn
Factors. 27: 713-722.

Vandierendonck, A., Van Hoe, R., and De Soete, G. 1988. Menu search as a function of menu
organization, categorization, and experience. Acta Psychologica. 69: 231-248.

16

Appendix A. Hierarchy search computer software

The appendices describe the computer software used to investigate hierarchical search. All
software was written in the Java programming language (for a discussion of Java, see Flanagan,
1996; Morrison, 1997). This language was chosen because it has built-in commands for creating
windows, buttons, and handling user interfaces. Java programs also have the advantage of being
machine-independent, meaning that the programs will run on any machine platform (PC,
Macintosh, Unix), provided that platform supports a Java virtual machine.

Java is an object oriented programming language, meaning the programmer defines classes
that contain attributes and methods for manipulating the attributes. One benefit of this
programming approach is that a class can inherit characteristics of another class, thereby
reducing the need to rewrite code. Figure A-1 shows the relationships between the classes used
to investigate hierarchical search.

ierarchyPage

isplay.eHierarchy

r tu I otorimie

rulld~ptimalHierarchy

Figure A-1. The Java classes written to explore hierarchy searches. HierarchyPage
provides data structures and methods useful for working with an item in the
hierarchy. It is used by many of the other programs. Displayffierarchy is a
class for basic windowing and interfaces with a given hierarchy and mission
scenario. The classes Practice, Search Time, TestHierarchy, and MotorTime all
derive from this class and add or change methods to compute different
statistics and read/write to different files. Setup provides a general scheme for
creating a hierarchy structure. Optimize modifies the general scheme to create
an optimal hierarchy. BuildOptimalHierarchy provides an interface to go
through each step in the process of building a hierarchy optimized for a single
mission scenario.

17

Appendix B. Summary of Java classes

This section provides object specifications for each Java class used. For each class, the object
specification provides a brief description of the class' purpose, the attributes associated with the
class, and the methods used by the class to carry out calculations.

Description

The HierarchyPage class represents an item in the hierarchy. It keeps track of the item name, the
path of button pushes needed to reach the item, the single-number position that corresponds to the path, the
frequency with which the page is searched for, and the level at which the button path terminates.

Attributes

name String The name of the page.

categorizetime int A statistic of how long it takes to reach the page. Its precise definition
depends on the class that invokes the HierarchyPage.

path int a An array that describes the sequence of button pushes needed to reach
the page.

num_replics int The number of times the page is to be searched for in the mission
scenario.

replics int The number of times the page has been searched for.

num buttons int The number of buttons in the hierarchy.

num levels int The number of levels in the hierarchy.

Methods/Events

ii~ ~ ~ ~ ~ ~~~~. "I•:::<::: I''"::::::::::::::::::::: :
............. :.:-.:.,... I....':......................:.......-.... ,...:......::....:::::

getPosition int Returns the position of the page.

getdevd int Returns the level of the page.

setPathfromPosition void int position Derives the path of the page from a given
position.

setPath void into path Sets the path of the page given an array.

18

Description

The DisplayHierarchy class reads in hierarchical information from a data file and creates a
window with buttons to display the hierarchy. It handles all button presses and relabels the buttons to
emulate movement through the hierarchy. It also provides routines for gathering statistics on user
performance.

'Attributes

randGen Random A random number generator.

nura_buttons int The number of buttons in the hierarchy.

num_levels int The number of levels in the hierarchy.

b Button [I] An array of buttons. Hierarchy labels are placed on these buttons.

target String The name of the item the user is to fincL

search for counter Label A label that displays information in the middle panel of the window.

next_target Button The Next target button.

level int Identifies the current level of the hierarchy during user search.

found target boolean Notes whether the user has found the target item.

startjtime long Used for gathering reaction time data.

nuintrials int The total number of trials in a mission scenario.

trial int The current number of trials that have been performed.

bp.count int A count of how many button presses have been made during the
current search.

path int [I Keeps track of the current sequence of button pushes generated by
the user.

page HierarchyPage[] The pages of the hierarchy.

block int The number of blocks that have been run.

hum_blocks int The number of blocks that are to be run during a testing session.

target_index int The index of the target item.

19

Methods/Events

action boolean Event e, Handles all user-generated events.
Object arg

update itatistics_me void int 0 path Not implemented.
t.arget

update statistics-tar void int 0 path Not implementedL
get
getdata_fromfle void Reads in hierarchy and mission scenario data from

the file data/items.txt.

write tofile void Not implemented.

fmdPagewithPath int int a path Identifies the index of the hierarchy page that has
the given path of button pushes.

GetSearchItem void Selects the next item for the user to search for.

buildDisplayPage void Relabels all buttons to emulate movement through
the hierachy.

20

Description

The Practice class instantiates the DisplayHierarchy class. It has no new attributes or methods.

21

Description

The SearchTime class extends the Displayffierarchy class by providing calculations of the
between1item tines.

Attributes

replica mt 0An arry that provides for each &ite, a counit of how often that item has
been encouintered while the user searches the hierarchy.

first-replica mt A count of how many times the user has encountered any item for the
first time.

first timke mnt A measue of how the between-item times for the first time an item is
encountered.

Methods/Events

updaft -utatistics o void int []path Calculates between-item time for the curret user
t-tarvet selection.

update statistics-tar void intO] path Calculates between-item time for the current user
get selection.

get~datajfrom-file void Differs from method in super only in the
declaration of some variables.

write to-file void Writes average betweien-itemn times, hierarchical
layout, and mission scenario to file
"data/search time tx".

22

Description

The MotorTime class extends the DisplayHierarchy class. It uses the methods and data structures
in DisplayHierarchy to create a window and hierarchy interface, however, it redefines other methods to
explore movement times between pairs of buttons.

Attributes

replics int Dl[J An armay that provides, for each pair of buttons, a count of how often
the user has performed the movement between the pair.

num_replics int The number of times the user must make a movement between each

pair of buttons.
targetX String The name of the first button in a movement pair.

target2 String The name of the second button in a movement pair.

buttonl int The index of the first button in a movement pair.

button2 int The index of the second button in a movement pair.

found_targetl boolean Set to true when the user selects the first button in the movement pair.

time int [][] An armay that provides, for each pair of buttons, the sum of time

required to move between the pair.

stat int D1[] An array that provides, for each pair of buttons, the sum of time squared
required to move between the pair. Used to calculate standard
deviations of motor times.

Methods/Events

.M..... ..n ... pn Typ .a~ m ru..........

action boolean Event e, Handles all user-generated events.
Object arg

GetSearchPattern void Randomly selects the next pair of buttons for the
user to make a movement.

get data from file void Sets up hierarchy, does not actually read from a
file.

write to_f'de void Writes, for every pair of buttons, the average
motor time and the standard deviation to file
"data/motor.txt".

23

Description

The TestHiearchy class extends the DisplayHierarchy class by providing calculations of the time
needed to find the target item.

Attributes
....... ..us

originalest~ ~~ ~~~ .t The........ tota tiere. edt.sac.tem.sonsenro..hth.r ia
h ierarc.....ical. la o. R e d..fo. at i e..e .. pred cte ti m req ire to...... searc th m ison s en ro.ih.h

....ma .ayo. R..ad in. fro a..data.file.

origia~est int totl tim re mire ossioh hen scenai-ifration from the friena

wrlteo e void WUpeiteiereqirdte smean rch time dataon(onrig inal pecthed
optialactuRal) tnfom fil data fiea.tmett

Method/Eve24

Description

The Setup class reads in user supplied data files, which define a hierarchy, and creates a mission
scenario. It modifies the hierarchy layout so it is partly randomized, and writes the hierarchy layout and
mission scenario information to a file.

Attributes

numn_buttons int The number of buttons in the hierarchy.

nunm_levels int The number of levels in the hierarchy.

num_labels int The number of pages in the hierarchy.

page HierarchyPage [] The pages of the hierarchy.

Methods/Events

...h. ..m ..etu..n -yp -aa et r .. e..c..........n

get data_from_file void Reads in hierarchical information, starting with
the file "Item_namesflevelO.txt". Then reads in
other files with names matching the item names.

create_new_hierarchy void Randomizes the hierarchy layout and defines a
mission scenario.

write tof "dle void Writes the hierarchical layout and mission
scenario information to the ifie "data/items.txt".

findPagewithPath int int 0] path Identifies the index of the hierarchy page that has
the given path of button pushes.

swap void int level, int Swaps the paths of pages item and new_item.
item, init Also changes the paths of the children of these
new_item items to keep the hierarchical order intact.

25

Description

The Optimize class extends the Setup class. It reads from files between-item time data and motor
time data. It calculates categorization time data and defines a model of search times. It then uses an
optimization technique to find a hierarchical layout that minimizes predicted search time. The optimal
hierarchy (along with its mission scenario and predicted search time) is written to a file.

Attributes

P

motortime int]! The time needed to move between each pair of buttons.

ast int The time needed to go through the mission scenario with the original layout

originalest int The time needed to go through the mission scenario with the original layouL
Using class computations. Useful for comparing to ast to detect bugs.

current_et int The predicted search time for the current hierarchical layout.

local-minima int The predicted search time for the best hierarchical layout yet found by the

optimization routine.

Methods/Events

I • .i • .r m l • void R e d n b e a c L m s i nscenar o, and betw een- i
item time data from file "data/search_time.txt'. Create
hierarchy pages. Also reads in motor time data from
file "data/motor.txt'.

create new hierar void Computes categorization time and stores it in hierarchy
city pages. Uses an optimization procedure to find the hier-

archical layout that miiie predicted search time.

iocaljniniina_chec boolean Returns tu iffthe current hierarchy layout is a local
k minm of predicted search time.

computed expecte int Retrnms the predicted time (in milliseconds) for the user
due~arch_time to search through the mission scenario with the current

write to rile void Writes the hierarchical layout and mission scenario
information to the file "dataoptimal.txt".

swap void int level, int Swaps the paths of pages item and new_item. Also
item, int changes the paths of the children of these items to keep
newvitem the hierarchical order intact.

26

ME IM•q

Description

Ile BuildOptimalffierarchy class provides an interface to guide a user through the creation of
gathering all needed data and testing an optimal hierarchy. It calls each class as needed.

Attributes

..n' • y • u • •

... .:::,:!!actio boolan Evntrg n rtde e ts p rpit
.......s e

..

Appendix C. Java source code

This section provides the source code of each Java class.

Prls Hin MlechyPage

This class providles, an obleo to contain al the data relevant to a specific page
In a hierurchy. This class is used by severa different programs.

Written by Greg Francis, Purdue University
August 1997

The views opinions, andor finodings contained In this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

class HierarchyPage

int numrjeveis, numýbutitons;
String name;
Ni categorize-time;
hIt replica, num-repllcs;
kit pathj] z new kit [nunijevelsi;

HlerarchyPage~int num-jeveis, Int num-buttons, Strin name, int categorize-fme,
hit replica, kit num-replics)

dthl.numjLeveis a numfIevels;
this.nurn buttons a num ~button.;
this.name a namne;
this~categorizejme = categorizetime;
this~replics - replics;
this.mnumorplics - num..replics;

#I returns the position that corresponds to the page's path
hIt getPoslton)

kit position-C;
hit tenip~josItion=O. sum-C;
for(Int 10O;lcnum-lvels;I4.+)

lf(pa~h(In l-I)

tenipposltion = temp~position~nufn~buttols.+ Pamhp;
sum - innt)Math.pow((doub~um-buttons,(double)o));

position atempjposltion~sum;
return position;

H returns the level of the page
hIt getLevelo

kIt Ievelu-1;
for(int l0;lknumjlevels;i..)

Wf(pathW -us-1)

28

level = 1-1;
i=numr_levels;

return level;

fl computes the page's path for the given index
fl this method must be explicitly caged
void setPathfromPosition(int position)

fl set defauLt
for(int i=O;icnum -levels ,++)

pathli] = -1;
hit sizefl = new hit [num levels];
hit level=O,sum=O;

fl compute range of indices for each level
for~int i= O;iknum-levels;i+.)

sizeW = (int)Math.pow((double)num-buttorns,(double)i);
sum .size[iI;
if(position < SUM)

level = i
i~num-jevels;

fl work backwards through levels to find path
for(int i-level;i>O;i--)

fl/find position in level
int temp..position = position - (sum-sizeliD);
path[i-1J = (mnt)temp~position%num-buftons);
// reset index as parent index
sum=O;
for(Int j=O;j<I-1 ;j++)

sum+=sizeffl;
position = sumn + (int)(temp~position/num-buttons);

/this method sets the path by copying an array
void setPath(intlj temp)

for~nt i=O;icnum-levels i++)
path[i] = temnpji];

29

knp.1java.awt.;
Import java~uHi.Ranidom;
import jave.uill.Odae;
kmport java.lo.;

r class DlsplyHlerrchy

This class oets up a display sorsn with buttons and then specifies targets for
the user to fWin n the hierarchicy. Data on the h ierarch y is read In from the fie
"dotliltemse.Wx. No output file is created.

Written by Greg Francis, Purdue University
August 1997

The views opinons, andor findings contained in thi repor we those of the autthor
and should not be construed as an offcial Department of the Army position, or decision,
unless so designated by other documentatlon.

public clas Displayl~lerarchy extends Frame

Random randGen a new Randorno;
lit numnbuttons, numjeoveis;
int numjMabels;
Button bfl;
String target
Label searchjforoourter,
Button nex~target;
wlIevels,%
boolean foundjaorgetutrue;
long staitlme;
int numybais=0, trial =0;
int bpocount-0;
lit l Path;
Hi.rarchyPage pagefi;
nt block-0;
lit numybocss=1;
lit targethidlex;

public DisplyHlerachy(Strlng ttle)

super(wo~);

I/sat sike of SearchTime vdndow
this.rvslze(600,40);

Set font
Font font w new FWn(Helvetca,Font. PLAIN .24);
satfort(fort);
//Cresdo memuber
MenuBar menubar- new Menuaaro;
ffis.seotenu~ar(menuber);
IlCreat file menu. Add Close.
Menu filuenew Menu(ffie);
flle-add(new MenultemC"Closev);
menubar.add(tS);

Random randGen a new Random~o;

gelOdLdatarvmLw;

II define range of path variable for latr use
path a new int [numjeisvelsj;

30

b--new Button~num buttons];
for~int i=0;inum..buttons;i++)

b@i = new ButtonC

//Establish panels for buttons and info
Panel left = new Panelo;
Panel right = new Panelo;

lefLsetLayout(new GridLayout(num buttons/2,1 .10,20));
forfint 1=0; lcnumn-buttons/2;i++)

left~add(b~g);

night.sett-ayout(new GridLayout(nm mbuttons/2,1 .10,20));
forfmnt inum buttons/2; i~cnum-buttons;i++)

right.add(b[Q);

thi.setLayout(new BorderLayout(5,5));
this.add("Wesr,left);
this.add("East".right);

YI Set up everything else on bottom panel
Panel bottom= new Panelo;
bottom.settayout(new GridLayout(2,1 .10,20));
search-for = new Label (CPress button to start)
Panel next = new Panelo;
next.setLayout(new FlowLayout(FlowLayout.CENTER));
next target = new ButtonCNext targer);
next-add(next-target);
counter = new Label ("".f(num-trials));
bottom.add(next);
bottom.add(couniter);
ths.addf"Center",searchjfor);

this.addf"South",bottom);
this packo;
this.showO;

public static void main(String argsf])

Displayl-ierarchy f = new DisplayHierarchy("Hierarchy');

1* This method handles all user interactions with the hierarchy.
It changes button labels according to movement through the hierarchy.
It notes when the target has been found.
It calls methods for measuring various response times.

public boolean action (Event e, Object arg)

If(e.target instanceof Menuftem)
MIVatch for quit command

String label = (String) arg;
ifflabel.equals(CClose"))

disposeo;

if(e.target instanceof Button)

String s= (String)arg;

if (e.target == next-target && found-target)

if (trial <num-trials)

GetSearch Itemo; #I Get new target
found Itargetz-false;

else #I see if another block is needed

block++;

31

ffMockuamn~x~ockz)

seeac -or.setTetAN dorme... Thanlsr);
wrlejejNleQ;

els W(block qwwnumbloclm) II reset everything for the next block

searher.sd Tet Next block..);

aGeMlJrep'cs x 0;
pageMf.categorize-imewO;

htmle NO;
fo~undjarget~tru;

IfaI.equalstarget))

i/N not target ad on pushed buton to move through hierachy
"forio I ;.knum -bt~tons;i.)
IfRe-terget ma b(ID

path(bp..oourij z i;

updvt@_Atetletioncttargetpalth);

//Relabel buitons to emnulate mov~ng through the hierarchy
bp...ourvt++;
lt go through bottom of hierarchy, reset to top page
Wf(bpqount;-numWieels-1)

bpcouriu0;.
foront Kj=0Jnum-levelsj.)

palhW c -1;

bli~dDisplayPage(peth, bp..count b);

return true;

U If target record between-ern time and prepare for next Item
else W(Ifoundjarget) i/ignore repeated pressings of target button

for~Jri I u0;1<numbihtons;i.+)
IfRe-target -z buD

fbundjaret-tue;
pathfbp.count] z t
W"Gdieaaltc~sltarget(peh);
bpocourt..;
If(bp...couN~ntwmjWeve)

bpoourtO
wotor J=0$-numlevwels j4)

merch-for.se(TextPrms 'Next targer);

return true;

II This method updates the statistics needed when there is a button press that

32

fl does not result in the target being found
public void update _satlstics..not~target(inflj path)

fl/This method updates statistics for a button press that
fl results in the target being found.
public void update statstcs target(intU path)

fl/This method reads data from the input file
public void get~datajfromq_flleO

try

String filename = "datariters.tx;
File f = new File(fllename);
FilelnputStream labels = new FilelnputStream(f);
DatainputStream label-file = new DatalnputStream(labels);

fl Get numjk~evels and num-buttons
String s = label-file.readl-neo;
//parse out needed info
fl/get num-levels
kit end = s.indexOfC,7);
String temp = s.substring(O,end);
num levels = (int) Float.valueof(temp).floatValueo;

fllget num -buttons
temp = s.substring(envd+1);
num buttons = (int) Float.value~f(temp).floatValueo;

fl/Compute number of labels in Hierarchy for later use
for(int i=Okinum levels;i++)

numjlabels . int)Math.pow((double)num-buttons,(double)i);

fl Create pages
page = new HierarchyPage[numjlabels];

fl/get page info from data file
for(int i=O;k~num-labels;i.+)

s = label fle.readUneo;

//parse needed information
fl/get name
kit name -end = s.index~f(",");
String name = s.substring(O,name-end);
//get position

WAt position Iend = s~ndexOf(," name-end.1);
String s2 = s.substring(name -end~1 ,posifion end);
kit position =(int) Float.value~f(s2).floatValueo;
fl/get time (always equals 0)
hit time end = s.kidex~f(",,position end.2);
String Z3 = s.subsftrg(positionj_end.2 time end);
hit time = (kit) Float.value~f(s3).floatValued;

I/get replications
kit reps end = s.lastlndex~f(",*);
s2 = s.substring(reps~end+1);
kit reps = (int) Float.value~f(s2).floatValueo;

numjtrials -= reps; U/keep track of how many trials there will be

I/ set up page info
page[J] = new HierarchyPage(num Jevels, num-buttons, name, time,

0, reps);
page[iI.setPathfromPosition(position);

33

cioh(Eeoptlon a)

Sydetm.out~pdinEnor *+..toSthWng);

This Method wiles data to the output Me
pubic void wrdtetojM*O

#I This method IdentIfies the Madx of the page that has the specified path
of button presses.
pubic Int flndPagewfthPath(InW path)

k* Item=-1;

Wo~nt 10; l'num lbels;14)

boolean found It true;
hnt checlQ a new bnt (mnmjevelsj;
chec z pagAQl.path:
foront jm04'num...iswlsij.)

lf(checleJ I= Pamti

lbund-ftfae;

If(toundjM)

I-numjlabels;

return kemn;

This method gobg the next target Krnm for the user to search for. it considers
how often each Rem is to be searched.

public void GetSearchitemo

pick an Roem at random. but not Rem zero
In RoU (intXMath.ebs(randGen.nex t)%(numrnabels-1)).1;

U make certain the kemn is to be seariched for
whle(page(RemJ].repics,- pagerstemJ-numnjepics)

Item a (lntX~iath.abs(randGen.nextdt)%(num-labels-1))+ I;

pagke(RMJ)rplcs44;

target a pagepitemli.name;
targotjndex a Rem;

fl get button-pressess and level for selected page
~in tempol w new ~in (numjkevelsj;
temp" page(ItemJ.path;
leve -pege{Rmj-getLevelO;

If city, identlfy country to ease search
Sung s*;
If~leewlu2)

U finhd page that corresponds to parent
kt parent-.pathg x new knt [numijevelsj;

34

forfint l=O;Icnum levels;i++)
parent..path~i1 temp[iJ;

parentpath[IeveIJ = -1;

int parentjIndex = findPagewithPath(parent..path);
s ",+page[parentjindex].name;

trial++;
search for.setText(target+s);
counter.setText(""+(numjtrials-trial));

for~int i=O;knumjmlevels;i++)
path~iJ = -1;

bp~cunt=O;
buisld~ayPage(path~bpcpount,b);,
Date now = new DateO;
start-time = now.getTimeo; H start clock for first pair of button presses

fl/This method builds the display for the appropriate level and path taken
//by the user as he moves through the hierarchy

void buildlDisplayPage(int a path, int level, ButtonD b)

mnt a temp = new int [nurn levels];

tor~int i=O0icnum levels;!++) fl/copy path to dummy array
temp~iq = pat-h[i);

II find label for each button
fdrl~nt k=O;kcnum-buttons;k++)

temp[Ievel] = k;
b~k].setLabel(page[finidPagewithPath(temp)J.name);

35

Iqmpot DlsplyHlerarc

r clas Practice

This class sets up a display screen with bultons; and the specifies targets for
the user to find in the hierarchicy. The hleracNcal Infrmation is read in from
the file *dsata/res.bi. it does not produce any out~pu files.

Written by Greg Francis, Purdue University
August 1907

The views opinions, andfor findings contained in this report we those of the atLho
and should not be construed as an od Ica Department of the Army position, or decision,
unless so designated by othe documentation.

If

pubic class Practice extends DislyHierachy

pubic Practice(Strlng tite)

super(titl);

public static void maln(Strlng argsWl

Setup stp - new Setup; Y Create mission scenario
Practice f a new PracticerTractice");

36

import java.awt.*;
import java.util.Random;
import java.utIl.Date;
import java.io.*;
import DisplayHierarchy;

r* elas Search~rime

This class sets up a display screen with buttons. and then specifies targets for
the user to find in the hierarchicy. The time between each pair of button presses
(between-item time) is noted and coded by the label of the second button.
Average between-Item times are stored in the file "datalsearchjtime.txr.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

public class SearchTime extends Displayl-ierarchy

{ n epis
int firstreplics;
kit first-time;

public SearchTime(String title)

super(title);

public static void main(String argslj)

Setup stp =new Setupo; I/create mission scenario
SearchTime f = new Search rime("Get between item time");

I/This method updates the statistics needed when there is a button press that
fl does not result in the target being found
II Overrides the method in super
public void update-statistics-not targiet~intf path)

fl verify that we are on the right path. Do not gather data for mistakes
boolean error = false;
for(int i=O0;i-bp-count;i+.)

lf(pathji] != pageptargetjindexj. pathilJ
error--true;

if(lerror)

kit index = findPagewithPath(path);
if(index I= -1) fl/catch bug

Date now = new Dateo;
// calculate between-item time
page~index].categorize...time -= (int)((long)now.getTimeo - (long) start-.time);
start time = (long)now.getTimeo;
if(bl4Tck == nurn bloclcs-1) I//keep track of encounters on last block

replIcsrindex]++;
System.out.printin(page[indexl. name+" ".page~rndex].categorizejrime+" "+replIcsflndex]);

I/update estimates for fis time encounters with an item

37

eslt i he trgtmein fou pnd.x~aeor.l

pubhis metoid updates staistics fora btton PGM) ta

Date neyw z new DateO;
Int Inde" alndageWlhathpeth);
if(wnex 1. -I)

psAgdexi-categodizejbnie +- (intx(Iong)now-getTimeo - (long) dtart - ime);
stakjImne x (long)now-getTlmeO;
lf(block am num bloclso-1) #I keep track of encounters on las block

rep'*s~ndexJ.;

Systemn.ouLprtrdlnpae~hxdexJ.name. .""pagmdexJ.categorizej inw+". r .rplsindxD;
#I update estimates for first encounters wit an Item
If(blockuO LA replica(Indexj=1)

lhV...Ume .= page(Indexj.categor~e time;

This method reads data from the input fie
#I Overrides method in super
public void getdatajfromj~feO

numn-blockcs = 2; #/overrides default in super
try

String Melname a *dsta/Rems.bcr;
File f a new File(fllename);
FleinputStream labels - new FlelnputStreamMf;
DatainputStream label-flI. = new DatalnputStreamn(labels);

Get num levels and num-buttons
String s=a label U'le.read Uneo;
I/parse out needed info
I/got numjlevels
Int end - s.lndexOf(",';
String temp a s.subetrng(O~end);
numjlevels z (Wi) Float.value~f(temp).floatValue;

#get numbuittons
temp a s.subetring(end. 1);
num-bultons a (int) Float.valueWf~tmp).floatValueO;

I/Compute number of labesi In Hierarchy for lIger use
for(lrt I.O;Icnum jevels;l..)

num labels ;= (ktMth.pew((dothlemnumbs.,(doutle~i);

#/Create POge
pp ag new HlerachyPage[numjIabelsj;
replios x new intfinumlabelsJ; # a counter for hew often each page is encountered

get page Info from data Mie
forolnt l=O;l-cnumn..abels;l..)

a a label-file.readl~neO;

38

//parse needed information
HUget name
hIt name -end = s.lndexOf*,");
String name = s.substring(O,name~end);
H get position
hit position end = s.lndexOfC," name-end+1);
String s2 = s.substring(name-end+1 ,position end);
hit position = (int) Float.valueOf(s2).floatValueO;
H get time (always equals 0)
hit time end = s~indexOff",",position-end+2);
String sa = s.substring(position~end+2,time..end);
hit time = (hit) Float.value~f(s3).floatValueo;

//get replications
hit reps nd = s.laslndexOf(7,");
s2 = s.substring(reps..end.);
hit reps = (int) Float~value~f(s2).floatValueo;

num trials -= reps; H keep track of how many trials there will be

HI set up page info
pageji] = new HierarchyPage(num-levels, num-buttons, name, time,

0, reps);
page[i].setPathfromPosition(position);

catch(Exception e)

System.out.println("Error "+e.toStringo);

IIThis method writes data to the output file
H/Overrides method in super
public void write to-fileo

HI Open output file
try

FileOutputStream out file;
outjlMe = new FieOuiputStreamCdatalsearcti time.txt");
PrintStream out2 = new PrintStream(out file);

HI Write info to data file
StringBuffer sbl = new String Buffer(num-levels." "+num-buttons);
out2.println(sbl .toString0);
hit current-estO0
System.outnntinn(first-tine+ "+flrsreplics);
forfint i=0-icnum-labels;i+.)

current est += page~q.categorize-time;
if(replk;(Qi]-0)

replics~i] = first replics;
page[il.rategorize-time = flrttme;

StringBuffer sb = new StringBuffer(page[il.name+", ".pageji.getPosition0+
"., .+(int((double)pageni categorize-time/(double)replkmicj)+,"
pagefi).numj~eplics);

outz2printin(sb~toStringo);

StringBuffer sb3 = new StringBuffer("Total search time ".current-est),
out2.println(sb3.toString0);

catch(Exception e)

System.out.piintln("Error "+e.toStringo);

39

Imnport java.awt.';
import java ui~l.Rsndom;
import java &ilI.Date;
impotjava.ic.;
Irnport Displayl-ierarchy;

r clas MotorTim.

This class sfts up a display scrsan with buttons and then specifies movemnents for
the user. The time to complete each movemnent is noted. The resulting data is stored
In the file "data/mnotor.btr.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and~or findings contained in this report are those of the author
and should not be construed as an offical Department of the Army position, or decision,
unless so designated by other documnentation.

public class MotorTime extends Display~leriarchy

String tageti, taget2-*Next target";
kit buttonl ,button2;
boolean foundjtargetl =true;
hIt repliosfig;
rinttime~li;

int statfiD;
int numryepllcs;

public MotorTirne(Strhig tie)

aqper(tie);

public static void maln(String argsfl){
Frame f a new MotorTlme(MAotor time date");

#I This mnethiod handles all user Interactions with the button presses.
#it notes the time to make the fis button press, the second button press, and
II it stores the diffierence In an array for statistics.
public boolean action (Event e, Mobjearg)

String sme;
If(o.target instanceof Briton)

a a (Strfng) erg;

IF(s.equals(targeil) "& lftundjargel)
#/If first target is selected
Date now a new Date();
starttime a (long~no.getTlmeO; /note time

foundjetrgeti -Ctrue;
return true;

If(a.equael(targ*M2 && foundjargetl)
(# lIt found second target after finding first

Date now a new Date0;

40

fl Update statisics
lf(trial>O)
{ //out not for first press of *Next Target" button

H/Save search time in array for later statistical computation
time[buttonl [button2] += (int)(long)now.getTime0 - (long) start time);
statqbuttonl][button2l += (int)Math.pow((double)((Iong)now.getTimeo -

(long) startime),2); #/to calculate variance}

/INVhien all done write statistics to file
if(trial == numjtrials)

writeto fileO;

If (trial < numtrials)
GetSearchPattemo; //Get new movement pattern

else
searchfor.setText("AII done...Thanks!");

found_targetl =false;

if(e.target instanceof Menultem){ /NVatch for close command
String label = (String) arg;
ifOabel.equaisWClose"))disposeO;

}
return false;

fl This methods sets up everything. It takes its name from the super, where information
Y is read in from a file. There is no file-input here.
public void get.data-from-fileo(

num buttons =8;
num leveis =1;

/f Compute number of labels in heirarchy for later use
for(int i=0;i<=num-levels;i++)

numljabeis -= (int)Math.pow((double)num buttons,(double)i);

create variables for statistical calculations
replics = new int [num.buttons+lI[num buttons+1];
time = new int [num buttons+l[numrbuttons+l];
stat new int [num-buttons+1l]num-buttons+1l;
num replics=3;
trial= 0;
num trais=num-replics(numbuttons+1)*(num buttons);

I/Do not need movements ending in "Next Target", so fll replic counter for
//those movements
for(int k=O;k<num buttons+l ;k++)

replics[kj[num.buttons] = num-replics;

//This method writes statistics on motor time to a file
public void write to fileO
{

I open output file
try{

FileOutputStream out file;
out file = new FileOutputStream("data/motor.txt");
PrintStream out2 = new PrintStream(outfile);

for(int i=O;i<num buttons+1 ;i++) I/ go through every pair of button pushes
for(int j=O;j<num buttons+1 j++)
(

double average = 0.0;
double stdev = 0.0;

41

Ca4ciUate average
average a (double~lmeIOy(double) numrjreplics;

#I Calculate standard deviation
IKnum-replics'1)

atdev a Mel .eqt(((double)*tipfl -
(double)nmirnrpi*ah.pow(aveag ,2))(double)(numrý_eplc-1));

Write to Me the page Index, everage, standiard deviation
S~kinBuffer sb5 - new StrlngBufferQ." .i."*average."

et~dev);
Open output file

out2.p~rlIsb5.toSlrkWg);

cich(Ew~eptlon ex)

System.outprintin("Eiror "4ex~toSWW~g);

This methd identifies a pair of buttton pushe for the user to make
#il takes Into account how many times. each pair must be perf'ormed
public void GetSearchPattern 0

Got new pair
buttoni a (htXMath.asb(randoen.nextIrto)%(numr~buttom.1));
button2 a (ktXMath.absWrndGen.nextno)%(num...buttorns.1));

chl~epkepAtoni Ibutton21ommimjeplics)

buttoni z (bi(Mth.abe xran on.nextlMto)%(num...butons.1));
btxton2 a (bwXrth.ab (randGen.rextlto)%(num..buttons.1));

repliceplbctonllbutton2j- ; #/ Update replication cawr for selected paer
trial++; # Update trial counter

lf(buttonl - num.but~tons) # button 8 is -Next target-
targeti z "Next targer;

else
targeti -. button1;

lf(bulton2 - nurpbuttons)
target2 z 'Next larger;

else
taret - .but~tonZ

put labels on buttons
fornlr KJuOmm~butonsj..)

bW-sstLabel(.D;

searchjfor.astText(targetl 4" -.z "+target2);

42

import java.util.Date;
import java.io.*;
import DisplayHierarchy;

r class TestHierarchy

This class reads in hierarchy data from "data/optimal.txr and creates a display with buttons
to allow the user to serach for items in the mission scenario. The total search time
is computed and the mean search time is written to the file "datalmeanjtime.txt".

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

*1

public class TestHierarchy extends DisplayHierarchy
{

int original-est;
int est;

public TestHierarchy(Strng title)
{

super(title);}

public static void main(String args[])
{

TestHierarchy f = new TestHierarchy("Get between item time");}

This method updates the statistics needed when there is a button press that
does not result in the target being found
Overrides the method in super
public void update_statistics not target(intl path){

I This method updates statistics for a button press that
//results in the target being found.
/Overrides method in super
public void updatestatisticstarget(int] path)
{

Date now = new Dateo;
int index = findPagewithPath(path);
if(index = -1)

page[index].categorizetime -= (int)((long)now.getTimneo - (long) starl.time);}

I/This method reads data from the input file
Overrides method in super
public void get_data_from_afleO
{

numblocks = 2; fl overrides default in super
try

String filename = "data/optimal.txtr;
File f = new File(filename);
FilelnputStream labels = new FilelnputStream(f);

43

DatainputStreem lab*LjM - new DatalnputStreamn(labels);

//Got numjeve a 1ý nd um-buttons
Strings8 - Wlabesje~edUeoo;

I/pare out Into
//got numklovels

kIt end z ~ne~(,)
String temp a sLsubdrlng(Oesnd);
numjeovefs a (kIt) Flost.valueOf"tm).floatValue;

// get numyiutons
temp - s.subetrng(ende1);
num~buttons a (kit) Float.valueOfýtm).floatValueO;

IICompLte number of label in Hierarchy for later use
"fo~i I-Wnum-lvelsfE)

numjabels - MathE.pow((dmble)num-buttons,(d~ubl)O;

fI Create Pages
pagep new HlerachyPvge(nump~kbelsl;
path =new hIt (nurrevalsj;
fl get page info from data file

for ;kt =*numjasbels;14)

s z labe ffie.readUneO;
I/"mre neede nformation
flget name

bit name..end x s.ktdexOfC,'");
String name a s.subtrlng(O,nameý_end);
// got poswbon
kit pooltion~end a &indexOfU..name..end.1);
String s2 z s-subsftrig~anerrend.1.posltin..end);
kit positon a (hit) Float~valuef(a2).flotVakueo;
fl got time
kit dnme~en z s.kdex~fC*poskion~end.2);
String &3 a s.aubstrlngooslion...ed4Ztkne...end);
hit time a (kit) FkoatvalueKf(s3).floatValueO;
I/get repicatkon
kit repsend a *.laatndex~f(".);
s2 a *.wjsubetrlngreen+1);
kit reps a (hit) FkLotvalue0f(s2).flostVahleo;

num trials += rep; fl keep track of how many Moial

flsW Lup page info
pagejil = new HlerarchyPage(numjevels. num buttons, name, time.

0, reps);
page(I).setPafthomPosltionposltion);

I/Got origia search time for random hirerachy
s a labefl fe.readuneo;
end z s.lailndexof(');
temp a sseubetring(end+ 1);
origirLnaeez (int) FloaLvalue~f"tm).flostValueo;

I//Got Predicted search time for optimal hierarchy
a = labeL-ffie.readUneo;
end z s.Wlaatldex~fC);
temp = s.subdtrng(end.1);

eat = (Int) Flostvalue~f(temp).floatValueo;

ctch(Ecepion a

Syetem-outprninWError *e.toSWWng);

#I This method wites data to thie output 30

fl Overrides method in super
public void write..to-fieo

#IOpen output file
try

FieOutputStream out-file;
out-file = new FileOutputStream("datalmean time.txt");
PrintStrearn oul:2 = new PrnntStream(outjlle;)%

#I Write info to data fie
ft add up actual search times, gathered with this program
int actual est-0;
for~int i=O6knum abels;i++)

actual est Z- page[i].categorize-tine;

Stringliuffer sb3 = new String~uffer("ln secondsfitemn - Original search time =

((double)(original-est/numjtrials)I 000)+
I1Expected search time = *+((double)(estlnum trials)/1 000)+
"VnActuaI search time = "+((double)(actual-est/num-trials)/1 000));

out:2.printin(sb3.oStringo);

catch(Exception e)

System.out.print~nCError "4.e.toStringo);

45

irnport java.uIg.Random;
import Java iuil.Date;
knport javamlo.*;

P* clas Setup

This class mads in user-suppled data files that define a hierarchical structure.
It re-orders the hierarchical stucture, defines a mission scenario, and writes
all the information to the fil *datalitems.bc.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documnentation.

'I

publc class setup

int num buttons, num-evels;
int num labels;

HierarchyPage pagefi;

public Setupo

gGet...datajrom..fleO;

create jnw..hierarchyO;

public static void maln(String argafIl

Setup f new Setup;

P* This method reads In data from specified flie. Names of Items In the first level are
in a fie called lItem ~namesilsvelO.Wx. The names of items in the subsequent levels are
In files with filenames "Item -names/<item name>.bctr, where <Rem-name' is given
in the levelO.txt file. I1
public void geIstdataromjLWe

fl Get Info from category data files
try

String filename a "Item namesdlevelOIK!";
Fie f a new File(flename;);
FilslnputStreamn labels - new Fi~lenpuAStrearM(;
DatainputStreamn Iabel-flk a new DatainputStream(labeft):

// Get num ~levels and numnbuttons
Strings a labe~lkfi.readlneoo;

//parse out Info

//get num levels
int end x sindxOt(",);
String temp a s.*ubstrlngO,end);
numjlevels a (int) Flost.valuefof~emp).floatValueo:
//get num buttons
temp - s.sublng(end+I);
num buttons = (Int) Flost.valueOffternp).floetValueo;

46

fl Compute number of labels in Hierarchy for later use
for~nt l10;inum-levels;i4'+)

num labels += (int)Math.pow((double)num-buttonis,(double)i);

fl/Create pages
page = new HierarchyPagelnumjlabelsj;

for~int l=O;k~num-abels;i+.)

pagefli = new HierarchyPage(numjlevels, nunibuttons, 0, 0,0 0);
page[i1.setPathfromPosition(0);

fl Load uin item names and position in Hierarchy, first level only
Systemn.out.printin("Loading names from file.");
for(int j=1 ;jcnum buttons+I ;j++)

s = label file.readi-neo;
I/ set patlhs
int a path = new intqnumjlevels];
path = pagelf.path;
path[0] = j-1;

pageffl.name = s.trimo;

catch(Exception e)

System.out.pin~ntifError "+e.toStringo);

fl Now load in other items using name from parent as filename
for~int ftem=1 ;item<num-labels ltem++) //cycle through all pages, except top, which is nothing

int level= pagelitem].getLevelo;

lf(level < num levels-2 && level 1= -1) // set children of parent

fl get path for parent page
bitl temp = new intqnum levels);
temp = page~iteml.path;-

String s = page[item].name;
lf(s.lengthO>1) fl do not look for file if filename is blank

try

FileinputStream labels = new FilelnputStream("ltem-namesr+s+".txt");
OatainputStream label-file = new DatainputStream(labels);
for~int j=0;*jcnum-buttOns~j++)

String si =label-file.read Uneo.-;

lf(sl .lengthO0.O && 151 .equal(nur))
51 s1.trimo;

else
.1

/Tbuild path for child page
kitl tempi =new intqnum-levelsl;
for~int k=0O;kcnum~levels;k'-+)

tempi [k] = templk];
tempilpevel+1J] = j

fl find next unused page and put Rtem there
forfint m1 ;m~num-labels m++)

int a Wn2 = new intgnum levels);

47

boolean founclau;
for(Int nuO;ncnumje~ves;n.,)

I(lri2tn] I= -1)

kund a false;
"nuinumevels;

11(faund)

POAgemJselPath~ternpi);
pagemJ.name a ai;
manum labmels

cich(Exrepbon e)

Systemn.out~pridntrlError "...tostlng);

Wase/flIf filename Is blank, build blank pages underneath

fort J=0 3Onucyý_.butonsaj-)

Strings *I;

/rould path for child page
liQf tempi = new intnumnJovelsI;
for~nt kuO-k'cnwnlevelsck.)

tempi [k] a temnp~kJ;
temiv~ Pavel+' I a =

fl find next unused page and put Rem twee
fortjrt mul ;m'numjlabels;m4.)

int a MQ z now hintnumlevels1;
w= pegemJ-palh;

boolean found-tru;
for(int n=O;n~num..lwvels;n4+.)

biund c false;
nnnum levels;

lf(found)

page(mJ-selPatOtMpI);
page~mj.narne = si;
mwnum walaels

/*Thsmetodscablsth odr fth hearh s I s atill anoizd
It als dellns #w isso cmo*

pubicvod reg-nw-~why

I4

Random randGen = new Randomo;

fl Now scramble paths to make a random hierarchy
System.out.printin("Randomizing hierarchy");
for(int item=1 ;Kem~num-abels;kem..)

fl/get button-presses and level for selected page
kit tempo = new kit [num-leveils;

temp = pagejitem].path;
kit level = pagelitemj.getLevelo;

//now pick a new button from the same branch in the hierarchy

kit new btn = temp(Ievel];
while(new bin ==temppevelD

new btn = (int)(Math.abs(randGen.nextlnto)%num buttons):

fl/identify path for new Item
Wi new-..temp[o = new kit [numjlevels];
for~int a=O~icnum levels;i+.)

new..,.temp~ij =- tempfij;
new temppevell = new-bin;

I/ now find the Item with this path
int new-Rem = fndPagewfthPath(newjemp);
swap~level,Item,new Item);

fl Fix naming problem (bug-fix)
for~nt i=O;icnum-labels~i+.)

if(page[i].name.equals")
page[i].name=-;

fl Now set up replications
System.out.piintin("Creating mission scenario");
I/System.04A~prinitin("Setting up replication data.");
fl 7 Items with corresponding repfics
for~int i1 I;i<c=7;i++)

kit item = (mt)(Math.absrndGen.nextlnto)%(num -labels-1))+1;
while(page[ftemJ.num-replics !=O 11 page[Item].name.lengtho<1)

Rtem =(int)(Math.abs(ranidGen.nextlnto)%(num-labeLs-1))+1;
page[item].num-repllcs = i

fl Write data to file
write to-fileO;

P This method writes the created hierarchy to the file "datalltems.btx.I
public void writetojfileo

fl Open output file
try

FlleOutputStream out-file;
out-file = new FfleOutputStream("data/items.btxr);
PrintStream out2 = new PrintStreamn(out-file);

I/ write new Hierarchy to fie
StringBuffer sbl = new StrinigBuffer(numjlevels+", "+num-buttons);
out2.pdntln(sbl .toString0);
for(rnt i=O;k~num-labelsji++)

49

arnb4Iffar ab a new S *igBv ErW(page(ij.rname, ".pag.{iJ getPoeltonOe
". .p.QPI.cstegorke..Ume. "pagemjmnumjepics);

otdpduinWsb.toSftWlg);

Strlng~uffer 9b3 a new SOlnBu~fkrCOrigku search Oime *++i
TsEivsated new search tUme a =

out2.prlndnsb3.toatrlng);

Syatem.out~prlriWEffor"+e.toStrkWg);

Y/This method taie a vector describin a path of bumo pushes and returns the kidex
Y of the Rem with that path.
public Wi flndPagawlthPath~rif path)

hIt Eemu-1;

foi~nt ImO;k~numjlabelsji.) Y/go through al Rams in the hiearchy

boolean found).z true;
hIt checlQj z new hit [numnjevelsj;
check z pege(lI.path;
Wor(it J=O;jcnum-W*jevls+) IIgo through path of each Rem to sa" ifE match.s

hacldmffl Is pathfl

If(foundjK)

Iinnumjlabols;

return Kem;

YI This method swaps the hiearchca positions of two Earn. K Is
YI complicated because k also has to mwap al the chii-en of fthoe Kearns.
public void ewap(Irit isa,lrit Remn, kt now-Rom)

hit twopf a new hitnumjavelsj;
kit newW~erpfl new umajovelsl;
hIt checkffl anew hIt fnurynjabelsjlo;

for(Int 1=0;*cnum-jabelsji..)
checql] z new lntfnumjkevasj;

tamip = paga(EemJ.path;
newjetMp z pagane~wn]ampath;

I/first copy all pafth into a large array wili changes mnade
fc(*tlO;knumrLabels;1+)

boolean changal -true, change2=true;

hIn holdfl a new hitqnumjevlsj;

hold z paegal)path;

"trIi KJ=OnurnjevelsJ++)

chlecim~ z hokW;

s0

for(infl j=O~J<=level;j++)

check to* seif path of current itemn includes the to-be-swpped paths
Wf(checkrlj j] != temp{JD

changel $false;
if(checkriIW 1= new..tempiJD

change2--false;

IImaking changes in path of current itemn (if necessary)
if(changel)

checkllilllevel] = new tempp evel];
if(change2)

chec~i][Ievel = temp[level];

#I now copy everything back with changes included
for~int i=O;i~num labels;i..)

page(i1.setPith(checkiD;

#I end of Setup class

51

Import javaiill.Random;
kmport java.LdlI.Date;
kmport Java.lo.';
import Setup;

1* class Optlmze

This clams reeds hIn data from "datma/tor.bcr and "datalseerch time.ber and
converts that data Int separate motor and categorization tnimes It the modifies
the hierarchy from "datafsearchjtime.ber Ino one that mlnimzse predicted search
time. The Ihia hierarchy is stored in the Mie "dats/optimal.bd".

Written by Greg Frencis, Purdue University
August 1997

The views opinions, and/or finidings; contained in Othi report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

public class Optimitze extends Setup

in motor tlmeffl;
hit ast=O, originaLest, current..est, local minima;

public Optimlze()

supero:

public static void main(Stning argsfl)

Optimize f a new OptimizeO;

r This method reads In data from flies. It reads in between-Item search times and
hierarchical layout from the flie "data/searchjlime.btr anid It reads motor times
from the fil *data'motor.bd*.
overrides method in super */
public void get...ata..ftomjfleO

UGet Info from category data filies
try

String filenameo z datalsearch - ime.tx;
File f - new File(fllename);
FileinputStream labels = new FkIenputStream(f);
DatahiputStreamn abeijile - new DatahiputStrearm(labeis);

II Get num levels and num buttons
Strings a Ia Q-flle.recdune;0

I/*am@ out Ino
#I get nmajevsis
int end z s.lndexOtC7');
String temp a s.subsfrlng(O,end);
num-jeveis a Ont) Float.value~femp).floatValueO;

#I get numnbuttons;
temp z s.substring(end~i);
num buttons z QInt) Float.valueOfftemp).floatValueO;

52

fl Compute number of labels in Hierarchy for later use
for(int i=O;iknum-levels;i++)

num-labels += (init)Math.pow((double)num-buttOnis,(double)i);
fl Create pages
page = new HierarchyPage[numj- abels];
fl Create array for motor time
motor Itime = new intqnwn..buttons+1I11num-buttons+1 1
fl/get page info from data fie
forfint i=O;icnumjabels;i++)

s =label-fl~e.readUneo;

//parse needed information
fl get name
kit name -end = s.index~f(",');
String name = s.substring(O,name..end);
fl get position
kit position end = s.indexOf(,","name-end' 1);
String s2 = s.substing(name-end+1 ,position~end);
kit position = (kIt) Float.value~f(s2).floatValueo;
fl get between-item time
kit time end = s~index~f(",",posli~orLend+2);
String i3- s.substring(position end+2,tineý._end);
kit time = (int) Float.value~f(s37)ffoatValueO;
//get replications
kit reps end = s.IastlndexOf(7,*);
s2 = s.substring(repsend+I);
kit reps = (kit) Float.value~f(s2).floatValueo;

fl set up page info
pageji] = new HierarchyPage(num-levels, num-buttons, name, time,

0, reps);
page[1.setPathfromPosition(postibon);

System.out~piintinC"Loaded page information.");

fl Get actual search time from file
s = Iabel-fle.readUneo;
end = s.lastlndexOf(" ");
temp = s.substring(end.1);
ast = (mt) Float.value~f(temp).floatValueo;

catch(Exception e)

System.outprintin("Error ".e.toStringo);

System.out.printinC"Loaded betwen-item times..");

System.out.printin("Estimated st = "+ comput~eexpeted_search...timeo);

System.out.printinCLoading motor data.");

fl Get motor parameters from data fie
motor-time = new int mnum buttons+1 Ilnum buttons+1 I
try

String filename = "data/motor.txt";
Fie f = new File(fllename);
FilelnputStream motor~pf = new FileinputStream(f);
DatalnputStream motor..p = new DatainputStream(motor..Pf);

for(int i=0;icnum-buttons+1 ;i++)
for(int j=O~jcnum-buttons+1 j++)

float time;
double stdev;
String s = motor-.pd.read~ineO;

fl Parse information out of string
Ul First 5 spaces are button codes and white space

53

9 need to find next white apace to identify end of time rtege
kiend MW s.IndexOfC" *.5);

Miin Q2 a s.su~btrlng(4,end);
time a Float~vakuOf(s2).flostValueO;
motorjlime[IJ z (If I time;

Systemn.out.prlftin-L~oeded motor information.");

cich(EWeptOM 0)

System.out~prin(IMEror "4+e.toStrlng);

r This method writes a hierarchy to thue fie "data/optimal.txr.
override metowd In soperI
public void wrlts..tocjlle

Open w.*A file
try

PrintShramn outz
ieOut~putfsarea ouk~fkl;

outAle = new FiesOutput;Streamirdstaloptimal-ber);
ouli2 . new PrluiStrea(otk*Ue);

Sbing~ufhr ebi a new SbingaufFe(nwnjlevels.", ".num-buton.);
out*2prlxrtlnbl .Wtosbn);
forplrit l.O;lcnum-labels;144)

Sftrlguffer sb a new S"VnBuffar(pagefil.nam*.". "4page[g1.getPosltionO+
", +pagej.catagorlzejime+", ".pageni .num-replics);

outzplritin(sb~toStringo);

SizingBuffer sb3 - now String~luffer("Original search time z '+original-est.-Nn
"*Estimated new search time - "4currenkiest);

out2.prnlrlnsb3.toString);

cich(Eception e)

Systemn.out~purinti("Error "'..toSftrln);

1* This method create. a new hiearchy that minimzes predicted search time.
overrides method in super /
public void create...new..hlerarchyo

Random randGen u new Randomo;
YI Convert searchL~me data into categoriztionitime data by compensating for
motor times

Syatemn.outpdrin(Conveuting between-Itemn timne data Into catgorizatlop_111me dde.-);

fcr(lIt ul 1;icnum-labels;I..)

Iin U path z new huqnumjevels);
path a pageffl.pafll;
~in level a pae(II.getLevel;
int dlme~O;

came x pageMi.cstegodne*ne - motor-timelpath~level-1 Hjpathplevelfl;
else I/movement from *Next Item button

cuime a pageffJ-categorizejlme - motor..timel~vatth~levelU;
pege(IJ.categorizetmein ctime;

orlginal...ea =compute expected search..timeo;
currentst = orgnal eat;
loaLminkma z originaLest

54

System.out.printlnActual search time = "+ast+*\nEstimated search time= "+onginal-est);

// actual search time (ast) and estimated search time (originalest) may differ
// due to rounding errors

#I initialize simulated annealing parameters
iNt tempcount=O;
double temperatureinit = (double)ast;
double temperature;

boolean found local minima = false;
II randomize HTerarchy
System.out.prntin("Looking for a new local minimaAnRandomizing hierarchy...");
for(int item=l ;item<num labels;item++)
{ //for each item, swap its position with another from the same branch

int level = pagefitem].getLevelo;

//now pick a new button from the same branch in the hierarchy
int newybtn = pageditem].path[leveq;
while(new btn == pageritemi.pathpevel])

new-btn = (int)(Math.abs(randGen.nextlnt0)%num buttons);

f/identify path for new item
int new-tempo = new iNt [numjlevels];
for(int i=O;knum levels;i++)

newjtempji] = page[item].path[ji;
new tempplevel] = new-btn;

fl now find the item with this path
int newjiem = findPagewithPath(newjtemp);
swap(level,item,new item);}

f/paths scrambled, compute expected search time for scrambled hierarch
current est = computeexpected_search time(;

// now keep going through search process until it finds a local minimum
while(!foundlocal.minima)
{

System.out.printlnLooldng for local minima...");
Y Now make changes to the Hierarchy
int count =0;
while(count <numrlabets)
{

//update simulated annealing parameters
tempcount++;
temperature = temperature init/(2+0.0005*((double)temp count));

/ pick an item at random, but not item zero (it has no label)
int item = (int)(Math.abs(randGen.nextlnto)%(numrlabels-1))+1;

// get button-presses for selected page
int level = page[item].getLevelo;

//now pick a new button from the same tree in the hierarchy
int new btn = page[item].path[leveq;
while(new btn == pageritem].pathpevel])

new bin = (int)(Math.abs(randGen.nextlnto)%num buttons);

//identify path for new item
int new tempo] = new int [num levels);
for(int i=O;i<num levels;i++)

newjtempfi] = page[item].path[i];
new temppevel] = new btn;

fl now find the item with this path
int newjiem=findPagewithPath(new temp);

fl Now swap items
swap(level,item,newjitem);

55

Nf search time does not improve, aswp beck with probabiliy
hin swap ee u ompuft..epeotdpsearchWmeO;

#I compute simulated annealin probabIty
douable sa~prob z Math.e -double*mpswa etlmperature);
saprob a saprobl(1 .sa..prob);

pick a random numnber between 0 and 1
double prob w randGen.nextDoubleo;
// keep swap If serhtime decreeses, or random number lees than aaprob
if(swap...ee <uets 11 saprob -u prob)

Sysem.out~prle~t~curentest. *.swap eet. omuntcournt
,' temp =e.temperatwe ',emp~couri4' ".saprob+ - prob);

count-& # rese counter of non-kepth swaps
currntMest z ewapest; # update current search time

else //swap back

oount44; fl update counter of non-kept swaps
I/swap beck If search time Is worse; Vf the same, don't bother
If(swap-est '. curreri eel)

ewap(lievel'iem,new Ien)

write new Hierarchy to Mfe W Iis the beet found so far
iW(curreri.see < local-mirnks && temp couui'ýnum label.)

local mninmsa cucirentee
System.out.pinin("Wr~tng current besd Hierarchy to fil 'beet~bcn.W

" Estimated seerch time a "+currenteset);
writejoj-ileO;

#eafter enough ineffective swaps (count :1 nunilabels)
verify that we have a local mnimmia, otherwise, keep making samps
found-lcalminma zlocaL-mhiima-check(currer...eet);

/* This method verfies that the current hierarchical layout is a local mniuma,
meaning that swpping a single Rem to any other possible position in is branch
would not decrease the proddoed search time. 1/
pubic boolean localLminima..check(hIt currenLest)

Systemn.out~printin("Verifying that we have a local minimum...);
#/go through all Reins
for~lrt IemuO;Rem-cnumjasbels;Iem.+)

If(page[IemI.mnumepIc~s p.0) II make certain the Kem is looked at

get button-preesee and level for selected page
hIn tempol - new hit fnum-levelsJ;
temp a p*Ageem].path;
hit level a paOGeRemJ-geti-evelo;

I/new go through all buttons from the same branch hin the hierarchy
WortlM new bin a O;newwbbi-cnumbuttons;newbn..)

build path for swap-to bullon
hin new _templi z new hin Inur..levsls];
"florsri c~num-levels11++)

neikJemrp(lJ z temnp(iJ;
new _temnppevell u new..btn;

#/now fInd the Rem with this path
hin neww.emulhnPagewlthPath(newjemp);

swap~levell,lem,new-kem);

56

if search time does not improve, swap back
int swapWest = compute..expected search.time0;
If(swapest < current est) # keep swap{

current est = swap est;
System-.outpdntln("This was not a local minimum.");
return false;# exit and tell the optimization procedure to keep looking

}
else #/swap back
{

swap(level,itemnew_item);
}

}
}
#iIf no swap improved predicted search time, the current layout must be a
local minimum
System.out.pdntln("This was a local minimum.");
return true;

P This method takes the current hierarchical layout, runs through all the
items in the mission scenario, and computes the predicted search time
for finding all the items.
it does this by noting the path and items the user must follow and categorize
to find the target items. It then adds up motor and categorization times
as appropriate. I
public int compute expected_searchtimeO
{

mt est=O;

#/cycle through all items in mission scenario
for(int i=0;i<num-labels;i++)
{

lf(page[i].num replics >0)
{

int search-time = 0;
int tempo = new intinumilevels];

temp = page[il.path;

go through path of button presses
always starts with "Next Target" (button 8)
search time += motor time[8l]temp[OD;
for(int •--O;k-num levels-1 ;k++)

if(tempk]1=-I)
{

if(temp~k+l]=-1)
search time += motor time[temp(kf][temp[k+¶lB;

build vector for current movement through path
int new-tempo] = new int [numilevels];
for(rnt k2 =O;k2<numlevels;k2++){

if(k2<=k)
newtempfk2] = temp[k2];

else
new-temp[k2] = -1;

}
now find the item with this current path and add its categorization
//time to search time for target item
int newitem--findPagewithPath(newjtemp);
searchtime + page[newjitem].categorize time;}

multiply search time for item by number of times it is searched for
est +- searchjtime*pagelTJ.numreplics;

}

return est;
5

57

import java.awL*;
import Javalio.*;

P class BulldOptlmalHlerachy

This class provides an interfac, to go through the steps needed to build an
optimal hierarchy. It cabs, in correct sequence other programs that gather needed
data and compute the oplimization algoritm.

Written by Greg Francis, Purdue University
August 1997

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.

public class. BuldOptimaiHierarchy extends Frame

Button bfl:

public BulldOptlmalHierarchy(String tIle)

H sad up frame with option buttons

super(ofe);

//sad size of display
this.resize(B00,400);

fl/Set font
Font font z new FontC"Helvetlca,Font.PLAIN,24);
selfont(font);

IlCreste menubar
MenuBar meniibar a new MenuBaro;
Menu file;

this.sell~enufar(menuber);
I/Create file menu. Add Quit.
filewnew Menu"FIle");
flle.add(new MenuftemCO~ur));
menubar.add(file);

fl create buttons
b a new Button (51;
b[OJ a new ButtonC"Practice");
b(1 I a new BIAt~onMtor date");
b(2] - new BiAtonHlearchy search");
b[31 = new BuWonOptimization");
b[41 new Button~restilng";

sstLayout(new GridLayout(5,1 .1 ,20));

b[OI.enableo;

this.packO;
this.showO;

58

public static void main(String argsl)
{

BuildOptimalHierarchy cmb = new BuildOptimalHierarchy("Build Optimal Hierarchy");

public boolean action (Event e, Object arg)
{

if(e.target instanceof Menultem)
{ //Watch for quit command

String label = (String) arg;
if(label.equals("Quir))System.exit(O);

}

if(e.target instanceof Button)
{

if (e.target == b[OD fl User goes through practice trials
{

b(O].setLabel("Just a second...");
for(int i=-O;i<5;i++)

b[i1.disableo;

Setup stp = new SetupO;
b[O].setLabel(*Practice");
Practice st = new Practice("Practice");

fl enable button for next step
bi1].enableO;
return true;

}
else if (e.target == b[il) fl User gathers motor time data
{

fl check to see if motor time data is already gathered
//if not, gather it
File f = new File ("data","motor.tx");
if(if.existso)MotorTime motor = new MotorTime("Motor data");

for(int i=-O;i<5;i++)
b[i].disableO;

b[2].enableO;
return true;

}
else if (e.target == b[2]) f/User gathers between-item time data
{

b[2].setLabel('Just a second...");
for(int i=O;i<5;i++)

b[]J.disableo;

Setup stp = new SetupO;
b[2].setLabel(Hierarchy search");
SearchTime st = new SearchTimeCHierarchy search");

b[3].enableO;
return true;

}
else if (e.target == b[3]) II Computer builds model and creates optimal hierarchy
{

foreint i=O;i<5;i++)
bJi].disableO;

b[3].setLabel('Come back in 1/2 hour");

Optimize opt = new OptimizeO;
b[3l.setLabel("Optimize");
b[4].enableO;
return true;

59

else 9 (etarget -- b(4) fl User gathes data with 00knt hierachy

TetHierurchy th = nw TeatDlerarchy(*Teelng*);

frIM~k lnOi<5;I44)
bpj.dbabIe0;

fa m ru;

60

